
Adjoinable MPI: from theory to a reusable

implementation

J. Utke

Argonne National Laboratory
Mathematics and Computer Science Division

Jan/2013

collaboration with:

⋄ Hascoët (INRIA), Naumann/Schanen (Aachen)

⋄ MPICH team

⋄ Heimbach/Hill (MIT), Larour (JPL)

outline :

⋄ the algorithmic differentiation (AD) context

⋄ concepts of adjoining numerical models with MPI
communication

⋄ objectives of a reusable implementation for adjoinable MPI

⋄ limitations imposed by the AD tools

⋄ the current state and the path forward.

Adjoinable MPI implementation 1

Adjoining with algorithmic differentiation (1)
algorithmic differentiation (AD) aka automatic differentiation

given: y = f(x) : IRn
7→ IRm

wanted: machine precision derivatives (of the algorithm) e.g.

⋄ Jacobian projections forward: ẏ = Jẋ,
⋄ reverse (adjoint): x̄ = JT ȳ
⋄ especially ∇f for m = 1

why adjoint: ∇f is computed at a small fixed factor over the cost
of f , independent of the size of ∇f

uses: sensitivity analysis, optimization, state estimation

Adjoinable MPI implementation 2

Adjoining with algorithmic differentiation (2)

how does it work?

⋄ view f as a program P executing a sequence [φ1, φ2, . . .] of
elemental operations vk = φ(vi, vj , . . .)

⋄ think of the vl as values assigned to program variables; follow
the data dependencies

⋄ forward propagation v̇k = φvi v̇i + φvj v̇j + . . . with partials φvl

⋄ reverse (adjoint) propagation:
v̄i = v̄i + φvi v̄k; v̄j = v̄j + φvj v̄k; . . . ; v̄k = 0;

⋄ note the reversal of the data dependencies

⋄ in particular for assignments: t = s adjoint propagation
implies s̄ = s̄+ t̄; t̄ = 0

⋄ important because assignments are the model for MPI
send-recv from source s to target t

Adjoinable MPI implementation 3

Adjoining with algorithmic differentiation (3)

how is it implemented?
by semantic augmentation of the original program.

⋄ data augmentation adds a v̄l to each vl via
� association by name: create a b v for each v, e.g. Adifor,

Tapenade
� association by address: redeclare v to be of a structured type

containing the value and an adjoint (address), e.g. Adol-C,
OpenAD, dco

⋄ logic augmentation adds the adjoint propagation statements
v̄i = v̄i + φvi v̄k etc. to the original code via

� source transformation: creates a reverted control flow with
basic blocks into which the respective adjoint statements are
inserted, e.g. OpenAD, Tapenade (in reverse order)

� operator overloading: create a trace during the forward
execution which then is played backward and interpreted, e.g.
Adol-C, dco

Implementation choices impact the MPI adjoint implementation!

Adjoinable MPI implementation 4

Simple MPI

⋄ simple MPI program needs 6 calls :

mpi init // initialize the environment

mpi comm size // number of processes in the communicator

mpi comm rank // rank of this process in the communicator

mpi send // send (blocking)

mpi recv // receive (blocking)

mpi finalize // cleanup

⋄ example adjoining blocking communication between 2
processes and interpret as assignments

c=a;

b=d;

P1 P2

RECV(c)

SEND(d)RECV(b)

SEND(a)

fo
rw

ar
d

ad
jo

in
t

SEND(b)

P1

RECV(t)
a=a+t

b=0

SEND(c)
c=0

RECV(t)
d=d+t

P2

a=a+c; c=0;

d=d+b; b=0;

⋄ use the communication graph as model

Adjoinable MPI implementation 5

previously on “AD and MPI”
not exhaustive and in no particular order:

⋄ Hovland: thesis “AD of parallel programs” - mostly forward

⋄ Hovland/Bischof: “Automatic Differentiation for Message-Passing

Parallel Programs” - association between value and derivative

⋄ Carle/Fagan: “Automatically Differentiating MPI-1 Datatypes” - ditto

⋄ Faure/Dutto: “Extension of Odyssée to the MPI library -Reverse mode”

- plain send/recv

⋄ Cheng: “A Duality between Forward and Adjoint MPI Communication

Routines” - plain send/recv

⋄ Carle: in ch. 24 of “Sourcebook of Parallel Computing” - 4 pgs on
analysis, plain send/recv

⋄ Strout/Hovland/Kreaseck: “Data flow analysis for MPI programs”

⋄ Heimbach/Hill/Giering: “Automatic generation of efficient adjoint code

for a parallel Navier-Stokes Solver”

- hand-written communication adjoints in MITgcm

⋄ Griewank: first ed. of “the book” had 2 pages on parallel programs;
second edition has more

Adjoinable MPI implementation 6

scope of consideration

⋄ “typical” MPI usage in the MITgcm ocean model: exchange
tile halos, reductions, synchronization.

⋄ select subset of hundreds of callable (interfaces) for
Fortran(77), C, C++,...

⋄ separating adjoinable communication from setup, grouping of
processes, I/O, status queries, topologies, debugging,...

⋄ concentrate on portion “relevant” for AD
⋄ consider the communication modes:

� for send: mpi [i][b|s|r]send

◮ i: nonblocking
◮ b: buffered
◮ s: synchronous
◮ r: ready

� for receive: mpi [i]recv

Adjoinable MPI implementation 7

requirements/goals for the adjoinable MPI concept (1)

⋄ ensure correctness of the adjoint, i.e. correct endpoints source
↔ target, correct increment (adjoint of send) / nullification
(adjoint of receive)

⋄ easy adjoint transformation for blocking calls: send 7→ recv

and recv 7→ send

c=a;

b=d;

P1 P2

RECV(c)

SEND(d)RECV(b)

SEND(a)

fo
rw

ar
d

ad
jo

in
t

SEND(b)

P1

RECV(t)
a=a+t

b=0

SEND(c)
c=0

RECV(t)
d=d+t

P2

a=a+c; c=0;

d=d+b; b=0;

⋄ has to remain deadlock free

Adjoinable MPI implementation 8

requirements/goals (2)

⋄ look at communication graphs; example: data exchange
between P1 and P2

SEND SEND

RECV RECV

P1 P2

... has a cycle (involving comm.edges)

⋄ hyp.: if the forward communication graph is acyclic, so is the
adjoint; look at the communication graph with reversed edges

⋄ with wildcards (but no threads): record actual sources/tags
on receive and send with recorded tag to recorded source in
the adjoint sweep

⋄ hyp.: no forward deadlock ≡ no cycle in current dynamic
comm. graph ⇒ no cycle in inverted dynamic comm. graph
≡ no adjoint deadlock

Adjoinable MPI implementation 9

requirements/goals (3)

⋄ dealing with deadlocks: SEND SEND

RECV RECV

P1 P2

⋄ break with buffered∗ sends, reordering, non-blocking sends, ...

RECV RECV

P1 P2

SEND

RECV

P1 P2

ISENDBSENDBSEND RECV

SEND

RECVRECV

WAITWAIT

ISEND

the last idiom is used in MITgcm ∗
resource starvation?

⋄ justification to consider all the communication modes

⋄ nonblocking also useful for performance enhancements by
allowing computation/communication overlaps

⋄ other performance concern - avoid imposing artificial ordering
of the adjoint messages

Adjoinable MPI implementation 10

options for non-blocking reversal

⋄ ensure correctness ⇒ use nonblocking calls in the adjoint

y=0

x+=t

y=0

x+=tISEND(x,r)

WAIT(rS ,x)

RECV(y)

ISEND(x,r)

WAIT(rS ,x)

RECV(y) SEND(y)

WAIT(r)

IRECV(t,r)

SEND(y)

WAIT(r)

IRECV(t,r)

x+=t

y=0 y=0

x+=t

IRECV(y,r)

WAIT(rR)

SEND(x)

IRECV(y,r)

WAIT(r)

SEND(x)

WAIT(r) WAIT(r)

R,y ,y ISEND(y,r)

RECV(t) RECV(t)

ISEND(y,r)

⋄ transformations are provably correct

⋄ convey context ⇒ enables a transformation recipe per call
(extra parameters and/or split interfaces into variants)

⋄ promises to not read or write the respective buffer

Adjoinable MPI implementation 11

recipes

f as program P with adjoint part P̄
X
in P in P̄

call paired with call paired with

isend(a,r) wait(r) wait(r);ā+=t irecv(t,r)

wait(r) isend(a,r) irecv(t,r) wait(r)

irecv(b,r) wait(r) wait(r);b̄=0 isend(b̄,r)

wait(r) irecv(b,r) isend(b̄,r) wait(r)

bsend(a) recv(b) recv(t);ā+=t bsend(b̄)

recv(b) bsend(a) bsend(b̄);b̄=0 recv(t)

ssend(a) recv(b) recv(t);ā+=t ssend(b̄)

recv(b) ssend(a) ssend(b̄);b̄=0 recv(t)

communication patterns use multiple “rules”
e.g., the adjoint of ibsend(a,r) → recv(b) → wait(r) follows
rule 2 for wait and rule 5 for recv to yield
irecv(t,r) → bsend(b̄);b̄=0 → wait(r);ā+=t.

papers at EuroPVM/MPI 2008, PDSEC 2009, ICCS 2010,...

Adjoinable MPI implementation 12

so, what is the problem?
since the theory papers were published, there has been no
comprehensive implementation of the adjoining recipes

⋄ what does exist are prototypes for:
� specific AD tools
� certain communication patterns
� specific MPI implementations
� specific target languages

⋄ implementations are fragile
⋄ but all prototypes agree on the design - as a wrapper library

What do we need?
⋄ a common set of interfaces, the “adjoinable MPI”, promising

standardized behavior
⋄ independence from the MPI implementation
⋄ bindings for the target languages C, C++, Fortran (incl. F77).
⋄ independence from the AD tool implementation:

� source transformation vs. operator overloading
� association by name vs. by address

⋄ a shared implementation of the common parts
Adjoinable MPI implementation 13

new implementation started in Fall 2012

involves:

⋄ Hascoët (INRIA Sophia Antipolis / Tapenade)

⋄ Naumann/Schanen (RWTH Aachen / dco)

⋄ Utke (Adol-C, OpenAD)

early identified constraints:

⋄ cannot pass buffer arrays or contexts as structured type in F77

⋄ be able to mix adjoinable and “passive” communications

⋄ preserve option to recompute MPI call parameters

a first example...

Adjoinable MPI implementation 14

example - original code

1 #include <mpi.h>

2 int head(double∗ x, double ∗y) {

3 MPI Request r;

4 int world rank;

5 MPI Comm rank(MPI COMM WORLD, &world rank);

6 if (world rank == 0) {

7 ∗x=∗x∗2;

8 MPI Isend (x, 1, MPI DOUBLE, 1, 0, MPI COMM WORLD,&r);

9 MPI Recv (y, 1, MPI DOUBLE, 1, 0, MPI COMM WORLD, MPI STATUS IGNORE);

10 MPI Wait (&r,MPI STATUS IGNORE);

11 ∗y=∗y∗3;

12 } else if (world rank == 1) {

13 double local;

14 MPI Recv (&local, 1, MPI DOUBLE, 0, 0, MPI COMM WORLD, MPI STATUS IGNORE);

15 local=sin(local);

16 MPI Isend (&local, 1, MPI DOUBLE, 0, 0, MPI COMM WORLD,&r);

17 MPI Wait (&r,MPI STATUS IGNORE);

18 }

19 }

Adjoinable MPI implementation 15

example - adapted to adjoinable MPI (and Adol-C)
1 #include ”ampi/ampi.h”

2 #include ”adolc/adolc.h”

3 int head(adouble∗ x, adouble ∗y) {

4 AMPI Request r;

5 int world rank;

6 AMPI Comm rank(MPI COMM WORLD, &world rank);

7 if (world rank == 0) {

8 ∗x=∗x∗2;

9 AMPI Isend(x, 1, MPI DOUBLE, AMPI ACTIVE, 1, 0, AMPI RECV, MPI COMM WORLD,&r);

10 AMPI Recv (y, 1, MPI DOUBLE, AMPI ACTIVE, 1, 0, AMPI ISEND WAIT, MPI COMM WORLD,
MPI STATUS IGNORE);

11 AMPI Wait(&r,MPI STATUS IGNORE);

12 ∗y=∗y∗3;

13 } else if (world rank == 1) {

14 adouble local;

15 AMPI Recv (&local, 1, MPI DOUBLE, AMPI ACTIVE, 0, 0, AMPI ISEND WAIT,
MPI COMM WORLD, MPI STATUS IGNORE);

16 local=sin(local);

17 AMPI Isend(&local, 1, MPI DOUBLE, AMPI ACTIVE, 0, 0, AMPI RECV, MPI COMM WORLD,&r);

18 AMPI Wait(&r,MPI STATUS IGNORE);

19 }

20 }

⋄ added activity flag and pairing enumeration as context parameters

⋄ AMPI Request can be just an MPI Request

⋄ permits mixing active and passive

Adjoinable MPI implementation 16

map to common implementation part
via mapping layer (generic for operator overloading)

1 int AMPI Isend (void∗ buf,
2 int count,
3 MPI Datatype datatype,
4 AMPI Activity isActive,
5 int dest,
6 int tag,
7 AMPI PairedWith pairedWith,
8 MPI Comm comm,
9 AMPI Request∗ request) {

10 return FW AMPI Isend(buf,
11 count,
12 datatype,
13 isActive,
14 dest,
15 tag,
16 pairedWith,
17 comm,
18 request);
19 }

⋄ obtain a contiguous array of values from
buf; depends on the implementation of the
active type

⋄ do the send of the contiguous array

⋄ keep internal information about the request

⋄ create a trace entry and retain all the
information needed for the adjoint in an
augmented request

source transformation creates the call directly

1 FW AMPI Isend(x,
2 1,
3 MPI DOUBLE,
4 AMPI ACTIVE,
5 1,
6 0,
7 AMPI RECV,
8 MPI COMM WORLD,
9 &r);

⋄ may not need to extract the values if using
association by name

⋄ do the send

⋄ keep internal information about the request

⋄ store parameters that can’t be recomputed
for the call to be generated in P̄

Adjoinable MPI implementation 17

how to handle the parameters with operator overloading ?
FW_AMPI_Isend

FW_AMPI_Wait

FW_AMPI_Recv BW_AMPI_Recv

BW_AMPI_Wait

BW_AMPI_Isend

r buf, count, dest,...

request table

Wait(r)

Recv(buf,

Isend(buf,

count,..,
dest,... r)

count,..,

#bufrecv count

src

count,..,
dest,...

Irecv(t,

r

request table

tr)

Wait(tr)

A[#buf]+=t

t, count, dest,..,tr,#buf

isend r

wait #bufcount

dest

r

...

trace stacks

count,..,
Send(A[#buf],

src,..,)src,..,)

intend for sharing:

⋄ FW/BW implementations

⋄ bookkeeping in the request table; put/get

⋄ stack of MPI call parameters (with opaque type)

Adjoinable MPI implementation 18

less tracing for source transformation

P0

P1

FW_AMPI_Isend

FW_AMPI_Wait

FW_AMPI_Recv BW_AMPI_Recv

BW_AMPI_Wait

BW_AMPI_Isend

r buf, count, dest,...

request table

Wait(r)

Recv(local,

Isend(x,

1,..,
1,... r)

1,..,

count,..,
dest,...

Irecv(t,

tr)

Wait(tr)count

dest

...

trace stacks

request table

0,..,)

Send(b_local,
1,..,
0,..,)

b_x+=t

t, count, ...tr

⋄ optional actions by call backs, e.g.
ADTOOL AMPI push CallCode(AMPI ISEND);

⋄ optional request bookkeeping configurable in the common
implementation

but there is a caveat
Adjoinable MPI implementation 19

missing the buffer association

P0

P1

FW_AMPI_Wait

BW_AMPI_Send

BW_AMPI_Wait

FW_AMPI_Irecv BW_AMPI_Irecv

FW_AMPI_Send

Wait(r)

1,..,
1,... r)

1,..,

count,..,
tr)

Wait(tr)count

...

trace stacks

request table

0,..,)
1,..,
0,..,)

t, count, ...tr

Irecv(y,

Send(local,

b_y=0

r

request table

buf, count, src,...

src,...

src

Recv(b_local,

Isend(?

⋄ not an issue with operator overloading; dynamic mapping
y→buf→#buf→A[#buf]

⋄ source transformation does static mapping y→b y
⋄ stop gap - add the buffer as parameter to the AMPI Wait ?

expand the scope
Adjoinable MPI implementation 20

consider collective waits

⋄ would have to pass buffer
array

⋄ knew the problem (started
with AMPI for OpenAD)

⋄ band aids vs solutions?

RECV

ISEND

WAITALL

ISEND

RECV

WAITALL

band aid “A”:

⋄ split the collective wait

⋄ pass individual buffers

⋄ imposes artificial order

⋄ can be a nontrivial code
change

i
R

i
R

WAIT(r)R
i

b =0
IRECV(b ,r)

ISEND(b ,r)

ISEND(b ,r)

S

R

1
S

2

1
S

2
S

R
1 1

WAIT(r R,b2)2

WAIT(r 1R,b1
R)R

R R

WAIT(r S,b2
S)S 2

WAIT(r 1S,b1
S)S

ISEND(b , r)i
R

k k
SIRECV(t ,r)

R
2
R

2IRECV(b ,r)

WAIT(r)S
k

b +=tk
S

Adjoinable MPI implementation 21

option “B”

⋄ introduce an anti wait

⋄ requires backward extension
of promises re. buffers to
anti wait

⋄ symmetric communication
patterns between processes
are “easily” adapted to the
symmetric anti wait

IRECV(b ,r)k
R

n+k

i
S

iISEND(b ,r)

WAITALL(r)

AWAITALL(r) WAITALL(r) **

k
RISEND(b ,r)n+k

i
SIRECV(b ,r)i

⋄ maximizing adjoint communication/computation overlap
requires rearranging code; possible if we have a symmetric
anti wait–wait section

⋄ deriving adjoint anti wait recipes and proving correctness is
hard if there is no symmetric “representer” pattern

⋄ non-symmetric cases perhaps not so relevant for our class of
applications

Adjoinable MPI implementation 22

option “C” - dynamically mapping memory

FW_AMPI_Wait BW_AMPI_Wait

FW_AMPI_Irecv BW_AMPI_Irecv

Wait(r)

1,..,
1,... r)

count,..,
tr)

Wait(tr)

request table

t, count, ...tr

Irecv(y,
b_y=0

r

request table

buf, count, src,...

src,...

Isend(

0xa0
0xbe

adjoint sweepforward sweep

U turn

?

relies on a pointer mapping algorithm; abstract description
developed in 2012 (with Hascoët) for general purpose adjoining in
the presence of pointers

Adjoinable MPI implementation 23

about the pointer mapping algorithm

⋄ track base address and offset of pointer values

⋄ maintain addresses map from forward to adjoint sweep (for symbols,
dynamic memory)

� implies runtime overhead for address mapping & offset tracking
� needs (static) source code analysis to separate benign pointer

uses from the ones that need mapping and trigger mapping
when pointee becomes unavailable (“last chance”) rather than
mapping for each pointee reference

� not yet implemented (because it is a significant effort)
� but needed for most uses of pointers in adjoints

⋄ possible simplifications allowing pointer values to be used without
mapping in the adjoint sweep

� F77 static allocation mode
� “joint” reversal, i.e. U-turn always happens before leaving the

stack frame; must not deallocate heap memory; implies
recomputations with overhead depending on depth of callstack

including option “B” until pointer mapping is robust
Adjoinable MPI implementation 24

limitations & difficult MPI features (1)

⋄ cannot retain efficiency advantage of MPI Rsend; no MPI Rrecv;
adjoint sends back to source value of wildcard recv

IRECV(y,r)

RSEND(x)

y=0

RECV(*) SEND

WAIT(r) RECV(t)

SEND RECV

ISEND(y,r)

WAIT(r)

+

⋄ two communication phases using MPI Test to maximize overlap -
for the adjoint this requires capturing both phases as context

ISEND

RECV

fixed loop count

True

Fa
ls

e B1

B2

ISEND

RECV

fixed loop count

True

Fa
ls

e B1

B2

TEST||done TEST||done

ISEND

RECV
WAITWAIT

RECV

ISEND

WAIT

SEND

B2

TEST||done

T
ru

e

IRECV
B1
ISEND

WAIT

SEND

B2

TEST||done

T
ru

e

IRECV
B1
ISEND

False False

SEND
IRECV IRECV

SEND

Adjoinable MPI implementation 25

limitations & difficult MPI features (2)

⋄ one-sided communication with passive targets; unlike active
targets they have no explicitly associated delimiters to which
to tie adjoint actions (increment/nullification)

⋄ dynamically acquired/released resources (but treatable like
dynamic memory)

⋄ wildcard receives are recorded as sequence of sources and the
adjoint will replay that sequence in that (artificial) order

⋄ for user-defined MPI data types start with the earlier paper by
Carle/Fagan (is more amenable for association by name than
for association by address)

⋄ user defined MPI op (tricky for operator overloading)

⋄ ...

Adjoinable MPI implementation 26

things that are relatively “easy”

⋄ single call collective communications (e.g. MPI Bcast,

MPI Reduce) with standard operations; have some efficiency
implications

⋄ global setup/teardown - is transparent if it encloses both the
forward and adjoint sweep

Summary:

⋄ early theoretical concept of adjoinable MPI hid some ot the
implementation complexity

⋄ common interface and partially shared implementation is
possible and evolving
(http://trac.mcs.anl.gov/projects/AdjoinableMPI)

⋄ is needed in many applications

⋄ recognizing difficulties is instructive for high-level adjoining
any library with functionality split over a sequence of calls

Adjoinable MPI implementation 27

